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Orthotropic viscous response of polar ice
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Abstract. Re-orientation of individual crystal glide planes as isotropic surface ice is deformed during its passage

to depth in an ice sheet creates a fabric and associated anisotropy. A simple macroscopic description is that these
material glide planes are rotated towards planes normal to an axis of compression, and away from planes normal
to an axis of extension, inducing an instantaneous orthotropic viscous response with reflexional symmetries in
the planes orthogonal to the current principal stretch axes. An associated orthotropic viscous law expresses the
stress in terms of the strain-rate, strain, and three structure tensors based on the principal stretch axes. The fabric
induced during differential stretchings along fixed principal axes, and the subsequent instantaneous viscous shear
response in different planes due to the frozen fabric when the axial stress and strain-rate are removed, define a
set of instantaneous directional viscosities in terms of the frozen principal stretches and the material response
coefficients. Various inequalities and equalities between these viscosities are derived from the original rotation
concepts, which, together with observed enhancement factors at large stretch and shearing, impose restrictions on
the permitted response coefficients. It is shown how a simple viscous law can meet all these requirements, and
such a law is illustrated for continued axial stretchings and shearing.
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1. Introduction

Ice core samples taken from depth in an ice sheet reveal strong fabrics, shown by signific-
ant alignment of initially randomly distributectaxes of individual crystals, and consequent
substantial differences in shear viscosities in different planes. The conventional incompress-
ible nonlinearly viscous fluid law used for ice sheet dynamics cannot reflect such induced
anisotropy, nor can any simple fluid law, since such laws are necessarily isotropic by frame
indifference. However, ice sheets do flow over long time scales, and a macroscopic constitutive
law which describes an anisotropic viscous shear response which changes with the evolving
fabric, in which shear strain-rate vanishes at zero shear stress, is an appropriate description.
Further, the relations should evolve continuously from an isotropic viscous law in an initial
state with no fabric, and should again become an isotropic viscous law if the evolving fabric
becomes isotropic.

A basic, and physically motivated, approach is to construct a macroscopic law from the
properties of an individual crystal and assumptions on how crystal interactions yield an aver-
age response. Azuma [1] and Azuma and Goto-Azuma [2] suppose that individual crystals de-
form only by basal glide, and its direction is determined by that of the maximum macroscopic
shear stress in the polycrystal, and the crystal (microscopic) and polycrystal (macroscopic)
stresses are related by a geometric tensor associated wittiatkie and glide directions.

The microscopic shearing is assumed to satisfy a viscous power law (Weertman [3]), and
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an averaging procedure determines the macroscopic response. The model is used to predict
fabric evolution ¢-axis orientation changes) for various stress configurations, and numerical
simulations are compared with field observations. Van der Veen and Whillans [4] adopt a
similar approach, but make a different assumption that the macroscopic average stress acts
on all individual crystals. They also include a recrystallisation process, and consider two
alternative models. Numerical simulations illustrataxis orientation evolution for various

stress loading, and particularly the influence of recrystallisation.

An alternative approach is the viscoplastic self-consistent theory based on Hutchinson’s
[5] treatment of the creep of polycrystalline materials and its extension by Molataal.

[6]. Here the single crystal is treated as an embedded idealised geometric inclusion in an
infinite medium with properties of an assumed form supposed to represent the macroscopic
behaviour. The response to uniform loading at infinity for given crystal properties determines
the medium properties. Castelnaual. [7] consider crystal slip on basal, prismatic and pyr-
amidal planes, and allow stress and strain-rate to depend on the crystallographic orientation.
The self-consistent method determines the instantaneous anisotropic viscous response of the
medium. Meyssonnier and Philip [8] apply this approach to a simplified configuration, namely
for a transversely isotropic medium with the inclusion an ellipsoid geometrically aligned with
the symmetry axes, which can apply only to loading and flow which reflects this symmetry.
They also introduce an orientation-distribution function to measure weightings of a continuous
spectrum ot-axis orientations. Simulations for uni-axial stress illusti@ateis evolution and
sensitivity to some of the model parameters.

For practical purposes, a constitutive law that is useful for investigating the large-scale
dynamics of an ice sheet must be a relatively simple relation between stress and a limited
number of variables representing the deformation and structure. It must also be a valid law,
satisfying the principle of material frame indifference, which requires material properties to
be independent of the observer. Svendsen and Hutter [9] formulate directly a frame-indifferent
viscous law which incorporates fabric through a single structure tensor defined by an axis of
assumed transverse isotropy. Again, an orientation distribution function is introduced to give
continuous weighting to the axis orientation, and an evolution equation for the distribution
function is investigated and illustrated for shearing deformation. Gédert and Hutter [10] have
extended this theory. The complicated calculations required to follow the evolving properties
of individual ice elements will add considerably to numerical treatments of large ice sheet
flows. A transversely isotropic flow law that avoids the use of an orientation distribution
function has been formulated by Van der Veen and Whillans [11]. They modify Johnson’s
[12] law for a transversely isotropic viscoelastic solid, based on a general constitutive law for
a transversely isotropic medium derived by Ericksen and Rivlin [13], by replacing material
measures of stress and strain-rate by spatial measures. However, they include the vertical
(gravity) direction in the material structure, so it is not a valid constitutive relation for the
response to general loading. The predictions of this flow law are illustrated by comparing
results of numerical simulations with field measurements.

An alternative approach which requires only that the deformation gradient of each element
is determined during the ice flow was adopted by Morland and Staroszczyk [14]. The mac-
roscopic viscous law proposed was motivated by a simple picture of individual crystal glide
planes, material planes, being rotated towards planes normal to principal axes of compression,
and away from planes normal to principal axes of extension. Given that the initial isotropy im-
plies a random distribution of crystal glide planes symmetrically distributed about all planes,
it is supposed that the new orientation will then be distributed symmetrically about these
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principal stretch planes, and so the new instantaneous viscous response will have reflexional
symmetry in these planes. That is, the instantaneous viscous response is orthotropic with
respect to the current principal stretch planes whose normals are the principal stretch axes, so
that the base planes of the orthotropy are evolving. The directional strengths of the response
depend on the current deformation, and there must be dependence, at least, on differences
between the principal stretches, which, according to the rotation picture, govern the rotations
of glide planes towards and away from the principal stretch planes. This overview ignores the
local interactions between individual crystals, and assumes that the macroscopic mechanical
response can be described in terms of fabric induced purely by macroscopic deformation.
It further supposes that the induced anisotropy depends only on the evolving current de-
formation, and does not depend on the deformation path. In practice, the effects of crystal
interactions may depend on the nature of the deformation process, and therefore induce a
different fabric for different deformation histories. However, this approximation is the most
simple approach to an evolving anisotropic viscous constitutive law which will be tractable in
atheory of large scale ice sheet dynamics. In this first exploration, the influence of temperature
on fabric was not considered. This formulation of a viscous constitutive law is not restricted
to instantaneous ‘snapshots’, nor to a fully developed fabric in which rotations of glide planes
are no longer occurring.

The orthotropic viscous response was described in terms of three structure tensors defined
by the outer products of the three orthogonal vectors along the principal stretch axes. The
viscous law is then a frame-indifferent relation between stress, strain-rate, deformation and
the three structure tensors, for which a general representation is available. Three different
classes of law were considered, depending on the choice of stress, strain-rate, deformation,
and structure tensors adopted. It was assumed that the deviatoric stress vanishes when the
strain-rate vanishes, to give the fluid-like behaviour, and that the law reduces to an isotropic
viscous fluid law in the initial state without deformation, and in any subsequent deformed state
which has equal principal stretches, necessarily unity by the incompressibility assumption.
For each class, only the same set of terms contribute to the instantaneous directional shear
responses following differential stretchings along fixed principal axes, and a simple model
with a single fabric response function was adopted to illustrate how some of the expected
qualitative behaviour could be realised. This model, however, did not have the flexibility to
allow different directional viscosities to be correlated with observed responses.

Here we adopt the Morland—Staroszczyk [14] theory and derive from the rotation concepts
further inequalities and equalities which must be satisfied by the instantaneous directional
viscosities following axial stretchings, depending on the three principal stretches. One reverses
a postulated inequality in [14]. Adopting the form of orthotropic law expressed in terms of
Cauchy stress and current strain-rate, and restricting attention to the terms contributing to these
responses, we re-examine the corresponding viscosity relations derived in [14]. The relations
are separable in the isotropic dependence on strain-rate and fabric dependence on deformation,
and a simplified form has two fabric-response functions with dependence on the principal
stretches and an invariant measure of total deformation. We show how one of the viscosity
equalities relates the two functions, so that the response can again be described in terms of a
single function, but now the required inequalities can be achieved by a simple function with
one or more free parameters. The parameters change the detail of the maintained axial and
shearing responses, and illustrations are presented for example functions. This theory, with a
single function, allows good qualitative correlation with observed responses, and flexibility to
correlate with more detailed experimental results.
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2. Orthotropic viscous model

We now follow the theory proposed by Morland and Staroszczyk [14], but consider only one
of the three proposed classes of orthotropic viscous law to demonstrate how the viscosity
inequalities and enhancement factors can be realised. The chosen form is the relation between
the frame-indifferent deviatoric Cauchy streésscurrent strain-rat®, Cauchy—Green strain
tensorB and three structure tensa™ (r = 1, 2, 3) defined by the outer products of the
current principal-stretch-axes unit vect&® (r = 1, 2, 3). The alternative classes were both
relations between frame-invariant measures.

Let Ox; (i = 1, 2, 3) be spatial rectangular Cartesian co-ordinates Wity (i = 1, 2, 3)
particle reference co-ordinates, andhe velocity components, then the deformation gradient
F, spatial velocity gradierit and strain-rat® have components

_ 8)6,' L. — 8v,~ D, — 1 81),' n 81).,' (l)
Yo BXj" Yo Bx.,-’ v 2 8Xj Bxi ’

and the deformation gradient is determined by the kinematic relation

. oF;; oF;;
Fii=— +uvy—L =L, F., 2
j 9t kaxk kLkj ()

wheret denotes time and the superposed dot denotes the material time derivative. In practice,
(2) must be solved simultaneously with the momentum balance and constitutive law, and is
subject to an initial condition thd = 1 when the ice is first deposited at the surface. The
strainB, unit vectorse™ (r = 1, 2, 3) and squares of the principal stretclies(r = 1, 2, 3)

are defined by

B = FFT, Be” = b.e", det(B — b,1) = 0. (3)
The latter relation is a cubic with positive roots, and we adopt the ordering
b1>b2>b3>0, (4)

with strict inequalities except when the ice is in an undeformed isotropic Btatel, b; =
b, = b3 = 1. That is, we assume that the maximum compression is igstbgection.
By incompressibility,

divv = 0, b1bobs = 1, by > 1, bz < 1, (5)
but the sign ofb, — 1) is not fixed. The structure tensors are defined by
MO =e"g e, =123). (6)

The deviatoric Cauchy stress is defined in terms of the Cauchy stragsl mean pressure
p by

6 =0+ pl, p:—%tra, tro =0, (7)

wherep is a workless constraint not given by a constitutive law, but determined by momentum
balance and boundary conditions.
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Figure 1. Plane view of deformation and rotation of a symmetric quadruple of glide planes.

Figure 1 illustrates a plane view of the deformation gradient teRsof a polycrystal
aggregate in terms of its two unique polar decompositions

F=RU= VR, 8

whereR is the rotation tensor and, V are, respectively, the positive definite right and left
stretch tensors. The principal stretchesjarér = 1, 2, 3), along the principal axe&” (unit
vectors) ofU in the first decomposition, and along the principal ag&sof V in the second
decomposition, and

" = Re", by =A% (r=1273). 9)

Newly formed compacted ice near the surface of an ice sheet is supposed macroscopically
isotropic, due to the random distribution of individual crystal glide planes; that is, all glide
planes and not just the basal planes. So, in the plane view in Figure 1, any crystal glide plane
will have three others symmetrically oriented with respect to the chosen axes, illustrated here
by the four basal planes of a set of symmetrically oriented crystals. As the aggregate deforms,
these material planes are rotated towards a plane normal to a principal compression axis,
A, < 1, and away from that normal to a principal extension akjs,> 1. Except when

A1 = A = A3 = 1, an undeformed state, all glide planes are rotated. Their symmetric
distribution implies that reflexional symmetry in the three orthogonal principal stretch planes
is maintained, either viewed in the non-rotated a€s or rotated axes”. Since the crystal

basal glide planes are those planes over which the ice can shear most easily, this view implies
that macroscopic shearing over the principal stretch planes should have ease of shearing,
fluidities or reciprocal viscosities, ordered by the respective normal compressions, the inverse
stretches. 1. Furthermore, the relative magnitudes of such viscosities should depend on the
mean rotations and hence on, at least, the streﬂchbsAn instantaneous viscous response
must therefore include dependence on at least the principal stretches, as arguments of response
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coefficients, but possibly more generally on the deformation. The most simple approach to an
instantaneous viscous constitutive law which captures an evolving orthotropic fabric sugges-
ted by the above picture is to relate the Cauchy deviatoric stress to the strain-rate, strain and the
three structure tensors. All interactions between individual crystals which influence rotation
are ignored in this relation.

The derivation of integrity (polynomial) and function bases for frame-indifferent (object-
ive) relations between tensors and vectors, to ensure that material properties are independent
of the observer, was pioneered by Rivlin and his associates (see, for example, Ericksen and
Rivlin [13], Rivlin [15] and Smith and Rivlin [16], and reviews by Spencer [17], [18]). Here
we are concerned only with a symmetric tensor relation for deviatoric stress in terms of strain-
rate, strain and three structure tensors defining orthotropic response with respect to the current
principal stretch planes, the form most convenient to use with the momentum equation. An
alternative expression for strain-rate in terms of the other variables, the usual glaciology
approach for the isotropic fluid model, can be formulated similarly. In order to include the
commonly adopted viscous rate factoiT' ), whereT denotes temperature, we introduce a
modified strain-rate

~ D
D= . 10
o) (10)
The general orthotropic representation given by Boehler [19] is then
3 ~ ~
& =Y [6:M? +¢,,3M”D +DM?) + ¢,.6(M"B +BM)]
r=1
+¢10D? + $11B? + ¢12(DB + BD), (11)
where the 12 response coefficiegs(i = 1, ..., 12) are functions of the 19 invariants
I, =trM®D, I.3=trM"B, L6 =trM®D2,
Lo =trM®B2, Li1o=ttMODB (r =12 3), (12)
116=trDZB, 117 = trDBZ, I1ig = detD, I = detB,

subject to the constraints that the deviatoric Cauchy stress has zero trace, and the material is
incompressible, so that only 11 coefficiegisare independent, and only 18 invariatifsare
nontrivial, I;9 = 1. While the above generality is beyond the restricted simpler models, we
would expect to capture the main features of the ice response, and which could be correlated
with observations, it is presented to demonstrate that the viscous properties of the response
derived shortly are completely general, not a consequence of any particular restriction.

We also require that (11) reduces to an isotropic viscous fluid law

6 = &1D + 0,(D? — 1tr D21), (13)
3

where®, , ®, depend on the two invariants Bf when there is no fabric; that is, in the initial
undeformed state = 1 when the principal stretches are equal, necessafib A, = A3 =1
by incompressibility, or subsequently when= 1 or whenF = R which is a rigid rotation
of the element. The conventional glaciology modebis= 0 and®, depends only on B>
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The above prescription asserts that there is fabric — some alignment of initially random glide
planes — only when there are differential principal stretches, or some shear, from the initial
state. Now

3
> MO =1, (14)
r=1

so comparison of (13) and (11) implies that whgge- 1, and all orthogonal axes are principal

stretch axes,

B=1: ¢s=¢s=¢s, bs+ 12 = 5P1,
pr=¢r=¢3=2D2d;, 0= D, (15)
¢7 =g = pg = $11 =0,

and the invariants (12) become

B=1: I, =trM®D, Lig=trM® =1,
Ir+6:trM(’)|52, Ir+g:trM(r):1’

(16)
I}"+12 = Ir (r = 17 27 3)7
Le=trD?  L;=trD=0,  Ig=detD,
implying dependence, & = 1, on the combinations
B=1: In=Y2,1=0, Ip=Y"2 I 6=trD%
17)

123 = Zf:l Ir+12 = Oa 116 =1r [N)Z, 118 = detD

The restriction t6 = O provides one relation between the coefficieptsAlso trD = 0
and deB = 1, and the invarianfy is therefore not required. Since at any state we suppose
a viscous response in whighvanishes whei vanishes, it is necessary that the coefficients
1, G2, O3, O7, O, ¢9, P11 Vanish wherD vanishes; that is, wheR, I, I3, I, Ig, Iy, 113, 114,
115, 1161 117, 118 vanish.

3. Directional viscosities

Consider distinct axial stretchesg , A, , A3z along the fixed co-ordinate axes, x,, x3, cor-
responding to a deformation

x1 = MX1, X2 = A2Xo, X3 = A3X3, Ahorz =1,

MM 000 A2 0 0
V=F=|0 x 0 |, R=1, B=[0 13 o0 |, (18)
0 0 i 0 0 3
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whereX,, X, , X3 are particle co-ordinates in the initial isotropic reference state. The velocity
and strain-rates are

v1 = x1A1/A1, V2 = Xpho/A2, v3 = X3h3/A3,
/A O 0

D=]0 X2/As O . (19)
0 0 Aa/A3

The principal stretch axes” andé™ coincide with the co-ordinate axes, so

0 0
M®D = of, M@={o0
0 0

O ~— O

0 0 0 0
0], M®=10 0 0], (20
0 0 0 1

o O -
O O O

and the deviatoric stress is given by the diagonal tensor

&4 0 O
é6=10 46, 0 |, (21)
0 0 6

where the components are defined in terms of the principal stresses, o3 by

~ 2 1 ~ 2 1 S 2 1
O'1=:—30‘1—:—3(O'2+0'3), O'2:§O'2_§(O_1'i_0—3)’ 03 = 30 _5(01+02)' (22)

The invariants (12) are functions &f, by i=1223).
Now remove the stress, and hence strain-rate, so the fabric defined by the turventis
is frozen, and consider the new instantaneous responses to simple shearings in different direc-
tions on different co-ordinate planes. For simple shear intliirection on a plane normal to
thex; direction(i # j), with no summation implied by a repeated suffix,

xi:kiXi—i—/cinj, Xj:)\,ij, Xk:)\,ka, (23)
vi:kijxj/kj, Uj:UkIO, Dij:%kij/)"jv (24)

wherei, j, k are distinct permutations of 2, 3, and the other strain-rate components are zero
except the symmetric entrie3;;. Figure 2 illustrates the deformations foe= 1, j = 3 and

i = 3,j = 1. Instantaneously, at the frozen valuesigf A, A3, the tensord-, R, B are
given by the diagonal tensors (18), aktd” (» = 1, 2, 3) by the single diagonal elements
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(20). The symmetric generators in (11) have instantan€giscomponents, equal to the
(ji) components,

T ~ g
T \\\ /’/
T, e T -1 ~ SN
- = < % < R
1 1K
o e LT
-— T, A
Th f i
Figure 2. Simple shear deformation parallel and Figure 3. Principal stretcheg; andx ; in the prin-
normal to the planez = constant. cipal stretch plan®x; x ;.
MPD+DM® :D;; (r=i or j), 0 (r#i orj), (25)
M®WB+BM®:0, D?:0, B?:0, DB+BD:(+b,) D, (26)

recalling (9), but there are also nonzero components otherijjarso the instantaneous stress
is not simply the shear components = ;.

The(ij) componenti # j) of the constitutive relation (11) therefore has the instantaneous
expression

0ij = [¢ir3 + Bj43 + (bi +b;) ¢12l Dij, (27)

defining an instantaneous viscosity for shear inthdirection on a plane normal to the
direction by

Ojj
pij = —2— =3 [birs+ dj13+ (bi + b)) paal, (28)
which depends for eadalij) only on the response coefficierts, s, ¢ ;13 andei,, independent
of other terms in the general relation (11). In particular, note that the t¢rgi3? in (11) and

@, D2 in (13) are not detected by this response. The ratios of the instantaneous directional
viscosities, from (28), are

13 _ $a+ ¢ + (b1 + ba)p12 12 ¢+ ¢s5 + (b1 + ba)g12
K23 $s+ ds+ (b2 + b3)po’ t13  Ga+ds+ (b1 + b3)pro

(29)

If the values ofb; andb, are interchanged in the first ratio, for ahy, then that ratio must
becomeu s/ u13 with the original values, and similarly interchanging the values,aindb;
for any b, in the second ratio. Thug;>, must not change whehby, b,, b3 are permuted, the
values of¢4 and¢s are interchanged when andb, are interchanged, the valuesdf and
¢g are interchanged whelp and bz are interchanged, and those ¢f and ¢ whenb; and
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b3 are interchanged. That i¢;, can depend in the frozen fabric only on the combinations of
invariants

3 3
¢12: g = Z I 3= tr B, I = Z I g=1r BZ, (30)

r=1 r=1

while ¢4, ¢s5 and¢gs can have common dependence lepand I,s and common dependence
onl, = by, Is = b, andIs = b3, respectively.

We now derive equalities and inequalities between the directional viscosities, correspond-
ing to different sets ab4, b, b3, not noted by Morland and Staroszczyk [14]. With the ordering
(4) there are 6 distinct sets of relative valuedqfb, andbs. The basic concept of easy glide
plane rotations being governed by the relative magnitudes of the principal stretches leads, for
each set, to corresponding equalities or inequalities of the directional viscosities.

Consider principal stretchés andx ; in the principal stretch plan@.x;x;. Figure 3 illus-
trates the rotations of the diagonals of an initial unit square wher 1; andeo;; < /2,
where tarie;;/2) = A;/A;. It is evident that each intersection line of any set of symmetric
glide planes withOx;x; undergoes rotation towards th@x; axis which increases ag;
decreases; that is, there is increasing alignmermtaes towards the direction of a smaller
principal stretch as it decreases relative to the other stretches. Thus the ﬂqjﬂiilrycreases
asc;; decreases, or equivalently the viscogity increases ag;; increases; that is, as;/A;
increases. With (4) and (8)then,

bs < bs = 13 < 23, (31)

by by
with the equalityu13 = w3 for by = b, , and similarly

b b
=2 < SN H13 < U12, (32)
by b

with the equalityp,o = w13 for b, = bs. It follows from (31) and (32) that the minimum
directional viscosity, bearing in mind the ordering (4), is always, irrespective ob,. The
relation betweemu1, andu,3 is determined by the ratio

b b b2
2 )= 22 =3 (33)
by by b1bs

where the incompressibility conditia®), has been used. Hence, depending on the magnitude
of b, relative to unity, we have

by > 1: 12 > 23, by =1: 12 = u2s, by <1:p12 < o3 (34)

Now, in view of (31), (32) and (34), the relations between the directional viscogitjeor
the six possible sets &f, b,, b3, are

bl:b2:b3:1::uij:/‘L (i,j:1,2,3), (35)

bi=0y>1>b3:0< 3= u23 < 12, (36)
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b1 > by >1>b3:0< 13 < 23 < 12, (37)
b1 >by=1>b3:0< 13 < 23 = 12, (38)
b1 >1>by>b3:0< 13 < 12 < 23, (39)
b1 >1>by=>b3:0< p13= p12 < 23, (40)

whereu defines the corresponding isotropic fluid viscosity.

4. Model construction

Following Morland and Staroszczyk [14] we consider only the terms in (11) which contrib-
ute to, and can therefore be detected by, the instantaneous directional viscosities (28), and
investigate a model relation

3
6= ¢ sM”D+DM? — £tr(M©D)1] + ¢12[DB + BD — 5tr(DB)1], (41)
r=1

where thep,, 3 ande1» terms have been modified to recover zero trace, noting that the included
scalar ttM D) = I,, and the scalar (DB) is the sum of, . 1,. We further assume a separable
dependence which factors out invariants depending only on the defornatonl retains a
common dependence on invariants involving the strainfathat is

¢12 = 12116, 122) g(124, I25),
¢r+3 = P1o(I16, 122) [ (1143, L4, I25), (r=1223). (42)

The directional viscosity (28) becomes
wij = 3 P1o(l16, 122 f(bi, Toa, I25) + f(bj, T4, I25) + (b; + b)) §(I2a, I25)], (43)

and since the response coefficients (42) must yield the isotropic fluid law (13) Bvker,
S0 Ip4 = Ips = 3,

®1(tr D?, tr D?) = 14 (tr D?, detD), £(1,3,3) +2(3,3 =1, O, =0. (44)

An appropriate combination af,o and ¢1; terms in (11) would be needed for a nonzero
@, term in (13). Morland and Staroszczyk [14] investigated and illustrated the case of no
dependence oy, and Is, when f = f(b) andg = 0, combined with a constant viscosity
isotropic response, and showed that this very simple single fabric response function model
could reflect some proposed features qualitatively, but fails to allow flexibility for different
directional viscosities. The viscosity inequalities (36)—(40) had not been derived.

We now focus on a model with two fabric response functions, slightly more general than
that illustrated in [14],

Oy =dy(trD?), D=0, f=f(h), g=gtrB), fO+g@B =1 (45
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and show that the new viscosity equalities and inequalities can be satisfied. For (45) the
instantaneous viscosity (43) simplifies to

o _ ®i(trD?)
2D; 4

Hij = [f (i) + f(bj) + (b + b)) g(tr B)], (46)

ij
and since this must remain bounded as any axial stretch increases indefinitely, we gewrite
and the normalisatiot45)s as

gK)=K'G(K), K=tB=bi+by+bs, f(D+3603 =1 (47)
whereG (K) is bounded. Then the viscosity (43) becomes

_ Oy (trD?)

Wi = %[f(b,-) + (b)) + (bi + b)) K*G(K)], > (48)

whereu defines the isotropic fluid viscosity at temperat@revhenb, = b, = b3 = 1. By
incompressibility (5) and the ordering (4),

12> b3 =1/(b1b)), K =b1+by+1/(b1by) > 3. (49)

The equality (35) follows from the normalisati@i5)s. Define

hiz= F(by) — Flbs) + 2P G(K) o (uaa — pezo). (50)
ha = Flbo) — Fby) + 2 P2G(K) o (zs — uno). (51)
has= fb2) — Flbs) + 26K o (uaz — o), (52)
then (35)—(40) become
bi=by>1>bg:hp=0, hi»>0, (53)
b1 >by>1>b3:hs1>0, hip>0, (54)
by >by=1>bg:hy >0, hip=0, (55)
b1 >1>by>b3:h3>0, hi<0, (56)
b1 >1>by=0>b3:h3=0, his<O. (57)

The equalitiesh;; = 0 in (53) and A3 = 0 in (57) are automatically satisfied, while the
equalityr,, = 0 in (55), whenb, = 1, hencebs = 1/b4, gives a relation folG(K) in terms
of f(b); namely

Kb
G(K) = —5—[f by — f )], K >3 (58)
7
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where
2bi =K -1+ (K —1)2—4, >2 (59)
The limit of (58) ash; — 1, K — 3, combined with the normalisatiad5)s, shows that
G(3) =-3f' (D =3[1- f(D], (60)
which is a restriction ory (b) atb = 1. The limit ash; — oo, K ~ b, yields

G(o0) = f(0) — f(00). (61)

That is, only one fabric response functigiib) remains free for prescription, subject to (60),
to match with observed properties, k) and the coefficienp,, cannot vanish as supposed

in Morland and Staroszczyk [14]. They also proposed, and satisfied, the inequality 1113
whenb, > b3, which violates the above deductions. The remaining inequalities of (53)—(57)
require that

hor >0, hoo 2 0 for by 2 1, hy3>0 for by < 1. (62)

It is reasonable to expect thdt(b) and G(K) are monotonic functions and do not change
sign, then, by (58) and (60),

f'0) 206 G(K)s0O, fH-120G6OR) s0 (63)

We will see that two further experimental limit relations, coupled with (61), determine a
negativeG (co), so then (63) implies thaf (») is monotonic increasing. A variety of simple
increasing functions (b) will be proposed to demonstrate numerically that the inequalities
(62) can be achieved, and to illustrate continued stretching and shearing responses.

5. Enhancement factors

Budd and Jacka [20] and Li Jugt al. [21] determine experimentally the limit ratios of fabric
induced viscosity to isotropic viscosity for indefinite axial compression with equal unconfined
lateral extensions, and for indefinite shear in a plane deformation following compression and
stretching. The reciprocals of these ratios are described as enhancement factors. We can now
determine these ratios when the constitutive model (41) with the fabric functions (45) is
adopted.

In the first experiment there are equal lateral stretehes 1, > 1, and by incompress-
ibility the axial stretch (a compression) is = AIZ < 1. The deformation is described by
(18)—(20) with the above identities, for which

trDB = 2D3(by — by ?), K = 2b; + b2 (64)
The law (41) with (45) yields

G(K)
3K

011 033 1 2 2
= = — = 3f(by) + 511+
2uDyy 2p D3z B 30

(by + 2b7). (65)
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AsS by — o0, with K ~ 2bq,

011 033
2uD11 21 Ds33

— 1f(00) + 2£(0) + £G(c0), = 4, (66)

whereA is the reciprocal of the axial enhancement factor.

Next consider an initial plane compression and stretch which is frozen at congtant
Azl by the removal of the stress and strain-rate, then followed by a simple shear at constant
strain-rateD;3 = 3y defined by

X1 = AMXy + kX3, X2 = Xp, X3 = )»les, K =prt, (67)
M4z 0 Ak 0 0 3y

B= 0 1 0 |. D=|l0 0 o0 (68)
A 00 At Iy 0 0

The principal stretch squarés (i = 1, 2, 3), the eigenvalues @, are

by=1,  b3=byt,  2b=A2 A%k \/(/\g +A2 4«27 — 4, (69)
and the associated principal vectef3 are given by

€2 =(0,1,0, =0 A%+ 112-byed =0,

(s) (s) (70)
[ei" P +es’P=1 (s =1093).
Thus the structure tensors and required combinations and invariants are
0 0O Vel 0 Ve
M@=|0 1 0], M® = 0 0 0 (s =1,3), (71)
0 0O e® — 1e§") 0 e§>e§>
M@D+ DM@ =0,
2¢%e 0 1
M®D +DM® = 1y 0 0 0 (s =1,3), (72)
1 0 2P
rM@D=0, UMD =yelley (s=13). (73)
The ¢, term requires
2 0 A2+a7%+«?
DB +BD = 3y 0 0 0 , trDB=yrrltk. (74)

A4+a% 4,2 0 2.1k
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By (41) and (45),

61 & 5 1 B G(K)

M_l; — M_f*;f — _ﬁ =3 [ fb) ePed + fbrY ePed + Txllx} , (75)
S1a a1 L GK) B

M—1;=M—3y.1=§ [f(bl)+f<b11>+7<x%+k12+xz>], (76)

whereK = by + 1+ byt Ask — oo with A4 finite, by ~ 2, K ~ k2, so (76) implies that

% — 5£(00) + 3 f(0) + 3G (00), = S, o

wheresS is the reciprocal of the shear enhancement factor. The three linear relations (61), (66)
and (77) forf(c0), f(0) andG (c0) have a unique solution

f(O) =8, f(oc0) = 6A — 58, G(o0) =6(S — A). (78)
For illustration we choose the values

S=1, A= (79)

Wl

’

measured by Budd and Jacka [20] for warm ice near melting, but recognise that their test
conditions are not necessarily appropriate to the response of ice in a cold sheet. In particular,
it is expected that for cold icd exceeds unity (an enhancement factor for axial compression
less than unity — according to Pimiergaal. [22] it can be less than-0). The limit values

(78) are then

fO=3%  fo)=%,  G(oo)=-2, (80)

which supports the earlier suggestion from (63) {iéK) is negative and’ (b) is monotonic
increasing, withf (1) > 1, and further thay (») is positive. There are the additional restric-
tions (60) onf atb = 1 andG at K = 3. For any choice off (b) meeting these conditions it
remains to satisfy the inequalities (62).

6. Model validity and illustrations

We now explore some simple monotonic increasing functip(ts with free parameters, de-
termine numerically the correspondidg K ), and demonstrate that the required inequalities
can be satisfied. For illustration purposes, two following fabric response funcfi@gnshave
been adopted

f) = fo — (foo — f0) EXP(—ab"), a >0, n>0, (81)
F(®) = fo+ (fs — fo) tanhab), o >0, (82)

where fo = f(0) and f,, = f(oc0) are limit values prescribed by (78)—(8@),in (81) is a
free parameter, and in both (81) and (82) is determined by the restricti@®),. Plots of
the chosen fabric functiong(b) are presented in Figure 4, where the curves labelled (1), (2),
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(3) correspond to the function (81) with = 1, 2, 3 respectively, and the curve labelled

(4) corresponds to the function (82). The same labelling applies in subsequent illustrations.
Figure 5 shows plots of the functiolis(K) determined by (58) for this set of functiorfgb).

We note that the function (81) with = 2 yields non-monotonic functions(K), with strong
minimums for large:. It is expected that the latter is an undesirable feature which will lead to
an unlikely viscous response for the ice, and this will be confirmed.
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Figure 4. Adopted forms of the fabric response Figure 5. FunctionsG(K) associated with the adop-
function f (). ted fabric response function&b).

With the adopted response functions presented in Figures 4 and 5, numerical simulations
of the uniaxial unconfined compression and simple shearing tests, as described in Section 5,
have been carried out. The results for the uniaxial compression started from the initially iso-
tropic state are shown in Figure 6, in which the evolution of the normalised axial viscosity
633/ (2uDs3) with increasingh, is illustrated for the different functiong (b). It is seen that
the function (81) with = 1 and the function (82) yield very similar results, while (81) with
n = 2 predicts much faster softening of the ice, and (81) witly 3 gives rise to non-
monotonic response which is an unexpected and unlikely material responsge 2Foithere
are physically invalid responses with negative viscosity.

The results of simulations of the simple shearing following the compression along-the
axis in a plane flow», = 1 are shown in Figure 7, in which the evolution of the normalised
directional viscosity613/(uy) with increasing shear is presented. Figure 7(a) illustrates the
results obtained for different function&») in the case of shearing started from the isotropic
stater, = A3 = 1, and Figure 7(b) presents the results obtained for shearing started from an
anisotropic state induced by an initial compressign= 1/i; = 0.5. Again, the functions
(81) withrn = 1 and (82) give similar results, and (81) with> 3 again yields an unlikely
response.

Finally, Figure 8 shows, for the function (81) with= 1, the evolution of dimensionless
directional viscositiegt;; /i« with b1 for all (except the isotropic state) possible cases of re-
lative valuesb, > b, > bs. It is seen from the plots that all the equalities and inequalities
(36)—(40) are satisfied for this particular choice of the fabric response fungtibyy and
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Figure 6. Evolution of the ratiosaz/(2uD33) with A1 in uniaxial compression for different fabric response
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Figure 7. Evolution of the ratiog13/(uy) with increasing shear following initial plane compressions for
different fabric response function&(): (a) shearing starts from an isotropic stétg = 1); (b) shearing starts
from an anisotropic statgé.3 = 0-5).

monotonic decreasing viscosities are obtained for all the cases considered. The function (82)
yields very similar results. However, while the inequalities are verified for the other values of
n in the function (81), it has been seen that non-monotonic responses oceuef@, and
negative viscosities for = 5.

7. Conclusions
An orthotropic viscous relation with reflexional symmetries in an evolving set of principal

stretch planes successfully models observed features of fabric evolution in polar ice sheets.
While the motivation for the macroscopic law is an underlying concept of individual crys-
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Figure 8. Evolution of dimensionless directional viscositigs;/u for different flows: (@)by = by > 1 > b3
(uniaxial compression); (bp1 > by > 1 > b3z(bp = 15); (c) b1 > b2 = 1 > b3 (plane flow);
(d)b1 > 1 > by > b3 (bp = 0-75); () b1 > 1 > by = b3 (uniaxial extension).

tal glide plane rotations, such a law could reflect induced anisotropy in other materials for
which the current response is instantaneously viscous. lllustrations show that very simple
restricted forms can satisfy derived properties of directional viscosities and match measured
enhancement factors in indefinite stretch and shear tests. There is ample flexibility to correlate
response with further data, for ice or other materials, and this constitutive form provides a
framework which could incorporate the macroscopic effects of a variety of observed crystal

interaction processes.
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