
Journal of Engineering Mathematics37: 191–209, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

Orthotropic viscous response of polar ice

R. STAROSZCZYK and L. W. MORLAND
School of Mathematics, University of East Anglia, Norwich NR4 7TJ, U.K.;
e-mail addresses: r.staroszczyk@uea.ac.uk, 1.morland@uea.ac.uk

Received 22 May 1998; accepted in revised form 6 May 1999.

Abstract. Re-orientation of individual crystal glide planes as isotropic surface ice is deformed during its passage
to depth in an ice sheet creates a fabric and associated anisotropy. A simple macroscopic description is that these
material glide planes are rotated towards planes normal to an axis of compression, and away from planes normal
to an axis of extension, inducing an instantaneous orthotropic viscous response with reflexional symmetries in
the planes orthogonal to the current principal stretch axes. An associated orthotropic viscous law expresses the
stress in terms of the strain-rate, strain, and three structure tensors based on the principal stretch axes. The fabric
induced during differential stretchings along fixed principal axes, and the subsequent instantaneous viscous shear
response in different planes due to the frozen fabric when the axial stress and strain-rate are removed, define a
set of instantaneous directional viscosities in terms of the frozen principal stretches and the material response
coefficients. Various inequalities and equalities between these viscosities are derived from the original rotation
concepts, which, together with observed enhancement factors at large stretch and shearing, impose restrictions on
the permitted response coefficients. It is shown how a simple viscous law can meet all these requirements, and
such a law is illustrated for continued axial stretchings and shearing.
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1. Introduction

Ice core samples taken from depth in an ice sheet reveal strong fabrics, shown by signific-
ant alignment of initially randomly distributedc-axes of individual crystals, and consequent
substantial differences in shear viscosities in different planes. The conventional incompress-
ible nonlinearly viscous fluid law used for ice sheet dynamics cannot reflect such induced
anisotropy, nor can any simple fluid law, since such laws are necessarily isotropic by frame
indifference. However, ice sheets do flow over long time scales, and a macroscopic constitutive
law which describes an anisotropic viscous shear response which changes with the evolving
fabric, in which shear strain-rate vanishes at zero shear stress, is an appropriate description.
Further, the relations should evolve continuously from an isotropic viscous law in an initial
state with no fabric, and should again become an isotropic viscous law if the evolving fabric
becomes isotropic.

A basic, and physically motivated, approach is to construct a macroscopic law from the
properties of an individual crystal and assumptions on how crystal interactions yield an aver-
age response. Azuma [1] and Azuma and Goto-Azuma [2] suppose that individual crystals de-
form only by basal glide, and its direction is determined by that of the maximum macroscopic
shear stress in the polycrystal, and the crystal (microscopic) and polycrystal (macroscopic)
stresses are related by a geometric tensor associated with thec-axis and glide directions.
The microscopic shearing is assumed to satisfy a viscous power law (Weertman [3]), and
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an averaging procedure determines the macroscopic response. The model is used to predict
fabric evolution (c-axis orientation changes) for various stress configurations, and numerical
simulations are compared with field observations. Van der Veen and Whillans [4] adopt a
similar approach, but make a different assumption that the macroscopic average stress acts
on all individual crystals. They also include a recrystallisation process, and consider two
alternative models. Numerical simulations illustratec-axis orientation evolution for various
stress loading, and particularly the influence of recrystallisation.

An alternative approach is the viscoplastic self-consistent theory based on Hutchinson’s
[5] treatment of the creep of polycrystalline materials and its extension by Molinariet al.
[6]. Here the single crystal is treated as an embedded idealised geometric inclusion in an
infinite medium with properties of an assumed form supposed to represent the macroscopic
behaviour. The response to uniform loading at infinity for given crystal properties determines
the medium properties. Castelnauet al. [7] consider crystal slip on basal, prismatic and pyr-
amidal planes, and allow stress and strain-rate to depend on the crystallographic orientation.
The self-consistent method determines the instantaneous anisotropic viscous response of the
medium. Meyssonnier and Philip [8] apply this approach to a simplified configuration, namely
for a transversely isotropic medium with the inclusion an ellipsoid geometrically aligned with
the symmetry axes, which can apply only to loading and flow which reflects this symmetry.
They also introduce an orientation-distribution function to measure weightings of a continuous
spectrum ofc-axis orientations. Simulations for uni-axial stress illustratec-axis evolution and
sensitivity to some of the model parameters.

For practical purposes, a constitutive law that is useful for investigating the large-scale
dynamics of an ice sheet must be a relatively simple relation between stress and a limited
number of variables representing the deformation and structure. It must also be a valid law,
satisfying the principle of material frame indifference, which requires material properties to
be independent of the observer. Svendsen and Hutter [9] formulate directly a frame-indifferent
viscous law which incorporates fabric through a single structure tensor defined by an axis of
assumed transverse isotropy. Again, an orientation distribution function is introduced to give
continuous weighting to the axis orientation, and an evolution equation for the distribution
function is investigated and illustrated for shearing deformation. Gödert and Hutter [10] have
extended this theory. The complicated calculations required to follow the evolving properties
of individual ice elements will add considerably to numerical treatments of large ice sheet
flows. A transversely isotropic flow law that avoids the use of an orientation distribution
function has been formulated by Van der Veen and Whillans [11]. They modify Johnson’s
[12] law for a transversely isotropic viscoelastic solid, based on a general constitutive law for
a transversely isotropic medium derived by Ericksen and Rivlin [13], by replacing material
measures of stress and strain-rate by spatial measures. However, they include the vertical
(gravity) direction in the material structure, so it is not a valid constitutive relation for the
response to general loading. The predictions of this flow law are illustrated by comparing
results of numerical simulations with field measurements.

An alternative approach which requires only that the deformation gradient of each element
is determined during the ice flow was adopted by Morland and Staroszczyk [14]. The mac-
roscopic viscous law proposed was motivated by a simple picture of individual crystal glide
planes, material planes, being rotated towards planes normal to principal axes of compression,
and away from planes normal to principal axes of extension. Given that the initial isotropy im-
plies a random distribution of crystal glide planes symmetrically distributed about all planes,
it is supposed that the new orientation will then be distributed symmetrically about these
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principal stretch planes, and so the new instantaneous viscous response will have reflexional
symmetry in these planes. That is, the instantaneous viscous response is orthotropic with
respect to the current principal stretch planes whose normals are the principal stretch axes, so
that the base planes of the orthotropy are evolving. The directional strengths of the response
depend on the current deformation, and there must be dependence, at least, on differences
between the principal stretches, which, according to the rotation picture, govern the rotations
of glide planes towards and away from the principal stretch planes. This overview ignores the
local interactions between individual crystals, and assumes that the macroscopic mechanical
response can be described in terms of fabric induced purely by macroscopic deformation.
It further supposes that the induced anisotropy depends only on the evolving current de-
formation, and does not depend on the deformation path. In practice, the effects of crystal
interactions may depend on the nature of the deformation process, and therefore induce a
different fabric for different deformation histories. However, this approximation is the most
simple approach to an evolving anisotropic viscous constitutive law which will be tractable in
a theory of large scale ice sheet dynamics. In this first exploration, the influence of temperature
on fabric was not considered. This formulation of a viscous constitutive law is not restricted
to instantaneous ‘snapshots’, nor to a fully developed fabric in which rotations of glide planes
are no longer occurring.

The orthotropic viscous response was described in terms of three structure tensors defined
by the outer products of the three orthogonal vectors along the principal stretch axes. The
viscous law is then a frame-indifferent relation between stress, strain-rate, deformation and
the three structure tensors, for which a general representation is available. Three different
classes of law were considered, depending on the choice of stress, strain-rate, deformation,
and structure tensors adopted. It was assumed that the deviatoric stress vanishes when the
strain-rate vanishes, to give the fluid-like behaviour, and that the law reduces to an isotropic
viscous fluid law in the initial state without deformation, and in any subsequent deformed state
which has equal principal stretches, necessarily unity by the incompressibility assumption.
For each class, only the same set of terms contribute to the instantaneous directional shear
responses following differential stretchings along fixed principal axes, and a simple model
with a single fabric response function was adopted to illustrate how some of the expected
qualitative behaviour could be realised. This model, however, did not have the flexibility to
allow different directional viscosities to be correlated with observed responses.

Here we adopt the Morland–Staroszczyk [14] theory and derive from the rotation concepts
further inequalities and equalities which must be satisfied by the instantaneous directional
viscosities following axial stretchings, depending on the three principal stretches. One reverses
a postulated inequality in [14]. Adopting the form of orthotropic law expressed in terms of
Cauchy stress and current strain-rate, and restricting attention to the terms contributing to these
responses, we re-examine the corresponding viscosity relations derived in [14]. The relations
are separable in the isotropic dependence on strain-rate and fabric dependence on deformation,
and a simplified form has two fabric-response functions with dependence on the principal
stretches and an invariant measure of total deformation. We show how one of the viscosity
equalities relates the two functions, so that the response can again be described in terms of a
single function, but now the required inequalities can be achieved by a simple function with
one or more free parameters. The parameters change the detail of the maintained axial and
shearing responses, and illustrations are presented for example functions. This theory, with a
single function, allows good qualitative correlation with observed responses, and flexibility to
correlate with more detailed experimental results.
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2. Orthotropic viscous model

We now follow the theory proposed by Morland and Staroszczyk [14], but consider only one
of the three proposed classes of orthotropic viscous law to demonstrate how the viscosity
inequalities and enhancement factors can be realised. The chosen form is the relation between
the frame-indifferent deviatoric Cauchy stressσ̂ , current strain-rateD, Cauchy–Green strain
tensorB and three structure tensorsM (r) (r = 1,2,3) defined by the outer products of the
current principal-stretch-axes unit vectorse(r) (r = 1,2,3). The alternative classes were both
relations between frame-invariant measures.

LetOxi (i = 1,2,3) be spatial rectangular Cartesian co-ordinates withOXi (i = 1,2,3)
particle reference co-ordinates, andvi the velocity components, then the deformation gradient
F, spatial velocity gradientL and strain-rateD have components

Fij = ∂xi

∂Xj
, Lij = ∂vi

∂xj
, Dij = 1

2

(
∂vi

∂xj
+ ∂vj
∂xi

)
, (1)

and the deformation gradient is determined by the kinematic relation

Ḟij = ∂Fij

∂t
+ vk ∂Fij

∂xk
= LikFkj , (2)

wheret denotes time and the superposed dot denotes the material time derivative. In practice,
(2) must be solved simultaneously with the momentum balance and constitutive law, and is
subject to an initial condition thatF = 1 when the ice is first deposited at the surface. The
strainB, unit vectorse(r) (r = 1,2,3) and squares of the principal stretchesbr (r = 1,2,3)
are defined by

B = FFT , Be(r) = bre(r), det(B− br1) = 0. (3)

The latter relation is a cubic with positive roots, and we adopt the ordering

b1 > b2 > b3 > 0, (4)

with strict inequalities except when the ice is in an undeformed isotropic stateB = 1, b1 =
b2 = b3 = 1. That is, we assume that the maximum compression is in thee3 direction.

By incompressibility,

div v = 0, b1b2b3 = 1, b1 > 1, b3 < 1, (5)

but the sign of(b2 − 1) is not fixed. The structure tensors are defined by

M (r) = e(r) ⊗ e(r), (r = 1,2,3). (6)

The deviatoric Cauchy stress is defined in terms of the Cauchy stressσ and mean pressure
p by

σ̂ = σ + p1, p = −1
3tr σ , tr σ̂ = 0, (7)

wherep is a workless constraint not given by a constitutive law, but determined by momentum
balance and boundary conditions.
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Figure 1. Plane view of deformation and rotation of a symmetric quadruple of glide planes.

Figure 1 illustrates a plane view of the deformation gradient tensorF of a polycrystal
aggregate in terms of its two unique polar decompositions

F = RU = VR, (8)

whereR is the rotation tensor andU, V are, respectively, the positive definite right and left
stretch tensors. The principal stretches areλr (r = 1,2,3), along the principal axes̄e(r) (unit
vectors) ofU in the first decomposition, and along the principal axese(r) of V in the second
decomposition, and

ē(r) = Re(r), br = λr2, (r = 1,2,3). (9)

Newly formed compacted ice near the surface of an ice sheet is supposed macroscopically
isotropic, due to the random distribution of individual crystal glide planes; that is, all glide
planes and not just the basal planes. So, in the plane view in Figure 1, any crystal glide plane
will have three others symmetrically oriented with respect to the chosen axes, illustrated here
by the four basal planes of a set of symmetrically oriented crystals. As the aggregate deforms,
these material planes are rotated towards a plane normal to a principal compression axis,
λr < 1, and away from that normal to a principal extension axis,λr > 1. Except when
λ1 = λ2 = λ3 = 1, an undeformed state, all glide planes are rotated. Their symmetric
distribution implies that reflexional symmetry in the three orthogonal principal stretch planes
is maintained, either viewed in the non-rotated axesē(r), or rotated axese(r). Since the crystal
basal glide planes are those planes over which the ice can shear most easily, this view implies
that macroscopic shearing over the principal stretch planes should have ease of shearing,
fluidities or reciprocal viscosities, ordered by the respective normal compressions, the inverse
stretchesλ−1

r . Furthermore, the relative magnitudes of such viscosities should depend on the
mean rotations and hence on, at least, the stretchesλ−1

r . An instantaneous viscous response
must therefore include dependence on at least the principal stretches, as arguments of response
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coefficients, but possibly more generally on the deformation. The most simple approach to an
instantaneous viscous constitutive law which captures an evolving orthotropic fabric sugges-
ted by the above picture is to relate the Cauchy deviatoric stress to the strain-rate, strain and the
three structure tensors. All interactions between individual crystals which influence rotation
are ignored in this relation.

The derivation of integrity (polynomial) and function bases for frame-indifferent (object-
ive) relations between tensors and vectors, to ensure that material properties are independent
of the observer, was pioneered by Rivlin and his associates (see, for example, Ericksen and
Rivlin [13], Rivlin [15] and Smith and Rivlin [16], and reviews by Spencer [17], [18]). Here
we are concerned only with a symmetric tensor relation for deviatoric stress in terms of strain-
rate, strain and three structure tensors defining orthotropic response with respect to the current
principal stretch planes, the form most convenient to use with the momentum equation. An
alternative expression for strain-rate in terms of the other variables, the usual glaciology
approach for the isotropic fluid model, can be formulated similarly. In order to include the
commonly adopted viscous rate factora(T ), whereT denotes temperature, we introduce a
modified strain-rate

D̃ = D
a(T )

. (10)

The general orthotropic representation given by Boehler [19] is then

σ̂ =
3∑
r=1

[φrM (r) + φr+3(M (r)D̃+ D̃M (r))+ φr+6(M (r)B+ BM (r))]

+φ10D̃2+ φ11B2+ φ12(D̃B+ BD̃), (11)

where the 12 response coefficientsφi (i = 1, . . . ,12)are functions of the 19 invariants

Ir = tr M (r)D̃ , Ir+3 = tr M (r)B , Ir+6 = tr M (r)D̃2 ,

Ir+9 = tr M (r)B2 , Ir+12 = tr M (r)D̃B (r = 1,2,3),

I16 = tr D̃2B , I17 = tr D̃B2 , I18 = detD̃ , I19 = detB,

(12)

subject to the constraints that the deviatoric Cauchy stress has zero trace, and the material is
incompressible, so that only 11 coefficientsφi are independent, and only 18 invariantsIj are
nontrivial; I19 = 1. While the above generality is beyond the restricted simpler models, we
would expect to capture the main features of the ice response, and which could be correlated
with observations, it is presented to demonstrate that the viscous properties of the response
derived shortly are completely general, not a consequence of any particular restriction.

We also require that (11) reduces to an isotropic viscous fluid law

σ̂ = 81D̃+82(D̃2− 1
3tr D̃21), (13)

where81 ,82 depend on the two invariants ofD̃, when there is no fabric; that is, in the initial
undeformed stateF = 1 when the principal stretches are equal, necessarilyλ1 = λ2 = λ3 = 1
by incompressibility, or subsequently whenF = 1 or whenF = R which is a rigid rotation
of the element. The conventional glaciology model is82 = 0 and81 depends only on tr̃D2.
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The above prescription asserts that there is fabric – some alignment of initially random glide
planes – only when there are differential principal stretches, or some shear, from the initial
state. Now

3∑
r=1

M (r) = 1, (14)

so comparison of (13) and (11) implies that whenB = 1, and all orthogonal axes are principal
stretch axes,

B = 1 : φ4 = φ5 = φ6 , φ4+ φ12 = 1
281 ,

φ1 = φ2 = φ3 = 1
3 tr D̃2 82 , φ10 = 82, (15)

φ7 = φ8 = φ9 = φ11 = 0,

and the invariants (12) become

B = 1 : Ir = tr M (r)D̃, Ir+3 = tr M (r) = 1,

Ir+6 = tr M (r)D̃2, Ir+9 = tr M (r) = 1,

Ir+12 = Ir (r = 1,2,3),

I16 = tr D̃2, I17 = tr D̃ = 0, I18 = detD̃,

(16)

implying dependence, atB = 1, on the combinations

B = 1 : I21 =∑3
r=1 Ir = 0, I22 =∑3

r=1 Ir+6 = tr D̃2,

I23 =∑3
r=1 Ir+12 = 0, I16 = tr D̃2, I18 = detD̃.

(17)

The restriction tr̂σ = 0 provides one relation between the coefficientsφi . Also trD̃ = 0
and detB = 1, and the invariantI19 is therefore not required. Since at any state we suppose
a viscous response in whicĥσ vanishes wheñD vanishes, it is necessary that the coefficients
φ1, φ2, φ3, φ7, φ8, φ9, φ11 vanish whenD̃ vanishes; that is, whenI1, I2, I3, I7, I8, I9, I13, I14,
I15, I16, I17, I18 vanish.

3. Directional viscosities

Consider distinct axial stretchesλ1 , λ2 , λ3 along the fixed co-ordinate axesx1 , x2 , x3, cor-
responding to a deformation

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, λ1λ2λ3 = 1,

V = F =
 λ1 0 0

0 λ2 0

0 0 λ3

 , R = 1, B =
 λ2

1 0 0

0 λ2
2 0

0 0 λ2
3

 , (18)
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whereX1 , X2 , X3 are particle co-ordinates in the initial isotropic reference state. The velocity
and strain-rates are

v1 = x1λ̇1/λ1, v2 = x2λ̇2/λ2, v3 = x3λ̇3/λ3,

D =
 λ̇1/λ1 0 0

0 λ̇2/λ2 0

0 0 λ̇3/λ3

 . (19)

The principal stretch axese(r) andē(r) coincide with the co-ordinate axes, so

M (1) =
 1 0 0

0 0 0

0 0 0

 , M (2) =
 0 0 0

0 1 0

0 0 0

 , M (3) =
 0 0 0

0 0 0

0 0 1

 , (20)

and the deviatoric stress is given by the diagonal tensor

σ̂ =
 σ̂1 0 0

0 σ̂2 0

0 0 σ̂3

 , (21)

where the components are defined in terms of the principal stressesσ1 , σ2 , σ3 by

σ̂1 = 2
3 σ1− 1

3 (σ2+ σ3), σ̂2 = 2
3 σ2− 1

3 (σ1+ σ3), σ̂3 = 2
3 σ3− 1

3 (σ1+ σ2). (22)

The invariants (12) are functions ofλi, λ̇i (i = 1,2,3).
Now remove the stress, and hence strain-rate, so the fabric defined by the currentλ1 , λ2 , λ3

is frozen, and consider the new instantaneous responses to simple shearings in different direc-
tions on different co-ordinate planes. For simple shear in thexi direction on a plane normal to
thexj direction(i 6= j), with no summation implied by a repeated suffix,

xi = λiXi + κijXj , xj = λjXj , xk = λkXk , (23)

vi = κ̇ij xj /λj , vj = vk = 0, Dij = 1
2 κ̇ij /λj , (24)

wherei, j, k are distinct permutations of 1,2,3, and the other strain-rate components are zero
except the symmetric entriesDji. Figure 2 illustrates the deformations fori = 1, j = 3 and
i = 3, j = 1. Instantaneously, at the frozen values ofλ1 , λ2 , λ3, the tensorsF, R, B are
given by the diagonal tensors (18), andM (r) (r = 1,2,3) by the single diagonal elements
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(20). The symmetric generators in (11) have instantaneous(ij) components, equal to the
(j i) components,

Figure 2. Simple shear deformation parallel and
normal to the planex3 = constant.

Figure 3. Principal stretchesλi andλj in the prin-
cipal stretch planeOxixj .

M (r)D+ DM (r) : Dij (r = i or j), 0 (r 6= i or j), (25)

M (r)B+ BM (r) : 0, D2 : 0, B2 : 0, DB+ BD : (bi + bj )Dij , (26)

recalling (9), but there are also nonzero components other than(ij), so the instantaneous stress
is not simply the shear componentsσij = σji.

The(ij) component(i 6= j) of the constitutive relation (11) therefore has the instantaneous
expression

σij = [φi+3 + φj+3 + (bi + bj ) φ12] D̃ij , (27)

defining an instantaneous viscosity for shear in thexi direction on a plane normal to thexj
direction by

µij = σij

2D̃ij

= 1
2 [φi+3 + φj+3 + (bi + bj ) φ12], (28)

which depends for each(ij) only on the response coefficientsφi+3, φj+3 andφ12, independent
of other terms in the general relation (11). In particular, note that the termsφ10 D̃2 in (11) and
82 D̃2 in (13) are not detected by this response. The ratios of the instantaneous directional
viscosities, from (28), are

µ13

µ23
= φ4+ φ6 + (b1+ b3)φ12

φ5+ φ6 + (b2+ b3)φ12
,

µ12

µ13
= φ4+ φ5 + (b1+ b2)φ12

φ4+ φ6 + (b1+ b3)φ12
. (29)

If the values ofb1 andb2 are interchanged in the first ratio, for anyb3, then that ratio must
becomeµ23/µ13 with the original values, and similarly interchanging the values ofb2 andb3

for any b1 in the second ratio. Thusφ12 must not change whenb1, b2, b3 are permuted, the
values ofφ4 andφ5 are interchanged whenb1 andb2 are interchanged, the values ofφ5 and
φ6 are interchanged whenb2 andb3 are interchanged, and those ofφ4 andφ6 whenb1 and
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b3 are interchanged. That is,φ12 can depend in the frozen fabric only on the combinations of
invariants

φ12 : I24 =
3∑
r=1

Ir+3 = tr B, I25 =
3∑
r=1

Ir+9 = tr B2, (30)

while φ4, φ5 andφ6 can have common dependence onI24 andI25 and common dependence
on I4 = b1, I5 = b2 andI6 = b3, respectively.

We now derive equalities and inequalities between the directional viscosities, correspond-
ing to different sets ofb1, b2, b3, not noted by Morland and Staroszczyk [14]. With the ordering
(4) there are 6 distinct sets of relative values ofb1, b2 andb3. The basic concept of easy glide
plane rotations being governed by the relative magnitudes of the principal stretches leads, for
each set, to corresponding equalities or inequalities of the directional viscosities.

Consider principal stretchesλi andλj in the principal stretch planeOxixj . Figure 3 illus-
trates the rotations of the diagonals of an initial unit square whenλj < λi andαij < π/2,
where tan(αij /2) = λj/λi. It is evident that each intersection line of any set of symmetric
glide planes withOxixj undergoes rotation towards theOxi axis which increases asαij
decreases; that is, there is increasing alignment ofc-axes towards the direction of a smaller
principal stretch as it decreases relative to the other stretches. Thus the fluidityµ−1

ij increases
asαij decreases, or equivalently the viscosityµij increases asαij increases; that is, asλj/λi
increases. With (4) and (9)2, then,

b3

b1
6 b3

b2
⇒ µ13 6 µ23, (31)

with the equalityµ13 = µ23 for b1 = b2 , and similarly

b3

b1
6 b2

b1
⇒ µ13 6 µ12, (32)

with the equalityµ12 = µ13 for b2 = b3 . It follows from (31) and (32) that the minimum
directional viscosity, bearing in mind the ordering (4), is alwaysµ13, irrespective ofb2. The
relation betweenµ12 andµ23 is determined by the ratio(

b2

b1

)/(
b3

b2

)
= b2

2

b1b3
= b3

2, (33)

where the incompressibility condition(5)2 has been used. Hence, depending on the magnitude
of b2 relative to unity, we have

b2 > 1 : µ12 > µ23, b2 = 1 : µ12 = µ23, b2 < 1 : µ12 < µ23. (34)

Now, in view of (31), (32) and (34), the relations between the directional viscositiesµij for
the six possible sets ofb1, b2, b3, are

b1 = b2 = b3 = 1 : µij = µ (i, j = 1,2,3), (35)

b1 = b2 > 1> b3 : 0< µ13 = µ23 < µ12, (36)
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b1 > b2 > 1> b3 : 0< µ13 < µ23 < µ12, (37)

b1 > b2 = 1> b3 : 0< µ13 < µ23 = µ12, (38)

b1 > 1> b2 > b3 : 0< µ13 < µ12 < µ23, (39)

b1 > 1> b2 = b3 : 0< µ13 = µ12 < µ23, (40)

whereµ defines the corresponding isotropic fluid viscosity.

4. Model construction

Following Morland and Staroszczyk [14] we consider only the terms in (11) which contrib-
ute to, and can therefore be detected by, the instantaneous directional viscosities (28), and
investigate a model relation

σ̂ =
3∑
r=1

φr+3[M (r)D̃+ D̃M (r) − 2
3 tr(M (r)D̃)1] + φ12[D̃B+ BD̃− 2

3 tr(D̃B)1], (41)

where theφr+3 andφ12 terms have been modified to recover zero trace, noting that the included
scalar tr(M (r)D̃) = Ir , and the scalar tr(D̃B) is the sum ofIr+12. We further assume a separable
dependence which factors out invariants depending only on the deformationB and retains a
common dependence on invariants involving the strain-rateD̃; that is

φ12 = 812(I16, I22) g(I24, I25),

φr+3 = 812(I16, I22) f (Ir+3, I24, I25), (r = 1,2,3). (42)

The directional viscosity (28) becomes

µij = 1
2 812(I16, I22)[f (bi, I24, I25)+ f (bj , I24, I25)+ (bi + bj ) g(I24, I25)], (43)

and since the response coefficients (42) must yield the isotropic fluid law (13) whenB = 1,
soI24 = I25 = 3,

812(tr D̃2, tr D̃2) = 1
281(tr D̃2,detD̃), f (1,3,3) + g(3,3) = 1, 82 = 0. (44)

An appropriate combination ofφ10 andφ11 terms in (11) would be needed for a nonzero
82 term in (13). Morland and Staroszczyk [14] investigated and illustrated the case of no
dependence onI24 andI25, whenf = f (b) andg = 0, combined with a constant viscosity
isotropic response, and showed that this very simple single fabric response function model
could reflect some proposed features qualitatively, but fails to allow flexibility for different
directional viscosities. The viscosity inequalities (36)–(40) had not been derived.

We now focus on a model with two fabric response functions, slightly more general than
that illustrated in [14],

81 = 81(tr D̃2), 82 = 0, f = f (b), g = g(tr B), f (1)+ g(3) = 1, (45)
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and show that the new viscosity equalities and inequalities can be satisfied. For (45) the
instantaneous viscosity (43) simplifies to

µij = σij

2D̃ij

= 81(tr D̃2)

4
[f (bi)+ f (bj )+ (bi + bj ) g(tr B)], (46)

and since this must remain bounded as any axial stretch increases indefinitely, we rewriteg

and the normalisation(45)5 as

g(K) = K−1G(K), K = tr B = b1+ b2 + b3, f (1)+ 1
3G(3) = 1, (47)

whereG(K) is bounded. Then the viscosity (43) becomes

µij = µ

2
[f (bi)+ f (bj )+ (bi + bj )K−1G(K)], µ = 81(tr D̃2)

2
, (48)

whereµ defines the isotropic fluid viscosity at temperatureT whenb1 = b2 = b3 = 1. By
incompressibility (5) and the ordering (4),

1> b3 = 1/(b1 b2), K = b1+ b2 + 1/(b1 b2) > 3. (49)

The equality (35) follows from the normalisation(45)5. Define

h12 = f (b1)− f (b3)+ b1− b3

K
G(K) ∝ (µ12− µ23), (50)

h21 = f (b2)− f (b1)+ b2− b1

K
G(K) ∝ (µ23− µ13), (51)

h23 = f (b2)− f (b3)+ b2− b3

K
G(K) ∝ (µ12− µ13), (52)

then (35)–(40) become

b1 = b2 > 1> b3 : h21 = 0, h12 > 0, (53)

b1 > b2 > 1> b3 : h21 > 0, h12 > 0, (54)

b1 > b2 = 1> b3 : h21 > 0, h12 = 0, (55)

b1 > 1> b2 > b3 : h23 > 0, h12 < 0, (56)

b1 > 1> b2 = b3 : h23 = 0, h12 < 0. (57)

The equalitiesh21 = 0 in (53) and h23 = 0 in (57) are automatically satisfied, while the
equalityh12 = 0 in (55), whenb2 = 1, henceb3 = 1/b1, gives a relation forG(K) in terms
of f (b); namely

G(K) = − K b1

b2
1 − 1

[f (b1)− f (b−1
1 )], K > 3, (58)
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where

2b1 = K − 1+
√
(K − 1)2− 4, > 2. (59)

The limit of (58) asb1→ 1,K → 3, combined with the normalisation(45)5, shows that

G(3) = −3f ′(1) = 3 [1− f (1)], (60)

which is a restriction onf (b) atb = 1. The limit asb1→∞,K ∼ b1, yields

G(∞) = f (0)− f (∞). (61)

That is, only one fabric response functionf (b) remains free for prescription, subject to (60),
to match with observed properties, butg(K) and the coefficientφ12 cannot vanish as supposed
in Morland and Staroszczyk [14]. They also proposed, and satisfied, the inequalityµ12 < µ13

whenb2 > b3, which violates the above deductions. The remaining inequalities of (53)–(57)
require that

h21 > 0, h12 ≷ 0 for b2 ≷ 1, h23 > 0 for b2 < 1. (62)

It is reasonable to expect thatf (b) andG(K) are monotonic functions and do not change
sign, then, by (58) and (60),

f ′(b) ≷ 0⇔ G(K) ≶ 0, f (1)− 1≷ 0⇔ G(3) ≶ 0. (63)

We will see that two further experimental limit relations, coupled with (61), determine a
negativeG(∞), so then (63) implies thatf (b) is monotonic increasing. A variety of simple
increasing functionsf (b) will be proposed to demonstrate numerically that the inequalities
(62) can be achieved, and to illustrate continued stretching and shearing responses.

5. Enhancement factors

Budd and Jacka [20] and Li Junet al. [21] determine experimentally the limit ratios of fabric
induced viscosity to isotropic viscosity for indefinite axial compression with equal unconfined
lateral extensions, and for indefinite shear in a plane deformation following compression and
stretching. The reciprocals of these ratios are described as enhancement factors. We can now
determine these ratios when the constitutive model (41) with the fabric functions (45) is
adopted.

In the first experiment there are equal lateral stretchesλ1 = λ2 > 1, and by incompress-
ibility the axial stretch (a compression) isλ3 = λ−2

1 < 1. The deformation is described by
(18)–(20) with the above identities, for which

tr D̃B = 2D̃11(b1− b−2
1 ), K = 2b1 + b−2

1 . (64)

The law (41) with (45) yields

σ̂11

2µD̃11

= σ̂33

2µD̃33

= 1
3f (b1)+ 2

3f (b
−2
1 )+ G(K)

3K
(b1+ 2b−2

1 ). (65)
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As b1→∞, withK ∼ 2b1,

σ̂11

2µD̃11

= σ̂33

2µD̃33

→ 1
3f (∞)+ 2

3f (0)+ 1
6G(∞),= A, (66)

whereA is the reciprocal of the axial enhancement factor.
Next consider an initial plane compression and stretch which is frozen at constantλ3 =

λ−1
1 by the removal of the stress and strain-rate, then followed by a simple shear at constant

strain-rateD13 = 1
2 γ̇ defined by

x1 = λ1X1+ κX3, x2 = X2, x3 = λ−1
1 X3, κ̇ = γ̇ λ−1

1 , (67)

B =


λ2

1+ κ2 0 λ−1
1 κ

0 1 0

λ−1
1 κ 0 λ−2

1

 , D =


0 0 1

2 γ̇

0 0 0
1
2γ̇ 0 0

 . (68)

The principal stretch squaresbi (i = 1,2,3), the eigenvalues ofB, are

b2 = 1, b3 = b−1
1 , 2b1 = λ2

1+ λ−2
1 + κ2+

√(
λ2

1+ λ−2
1 + κ2

)2− 4 , (69)

and the associated principal vectorse(r) are given by

e(2) = (0,1,0), e
(s)

2 = 0, λ−1
1 κ e

(s)

1 + (λ−2
1 − bs) e(s)3 = 0,

[e(s)1 ]2+ [e(s)3 ]2 = 1 (s = 1,3).
(70)

Thus the structure tensors and required combinations and invariants are

M (2) =


0 0 0

0 1 0

0 0 0

 , M (s) =


e
(s)
1 e

(s)
1 0 e

(s)
1 e

(s)
3

0 0 0

e(s) − 1e(s)3 0 e
(s)
3 e

(s)
3

 (s = 1,3), (71)

M (2)D+ DM (2) = 0,

M (s)D+ DM (s) = 1
2γ̇


2e(s)1 e

(s)

3 0 1

0 0 0

1 0 2e(s)1 e
(s)

3

 (s = 1,3), (72)

tr M (2)D = 0, tr M (s)D = γ̇ e(s)1 e
(s)

3 (s = 1,3). (73)

Theφ12 term requires

DB+ BD = 1
2 γ̇


2λ−1

1 κ 0 λ2
1+ λ−2

1 + κ2

0 0 0

λ2
1+ λ−2

1 + κ2 0 2λ1
1κ

 , tr DB = γ̇ λ−1
1 κ. (74)
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By (41) and (45),

σ̂11

µγ̇
= σ̂33

µγ̇
= − σ̂22

2µγ̇
= 1

3

[
f (b1) e

(1)
1 e

(1)
3 + f (b−1

1 ) e
(3)
1 e

(3)
3 +

G(K)

K
λ−1

1 κ

]
, (75)

σ̂13

µγ̇
= σ̂31

µγ̇
= 1

2

[
f
(
b1
)+ f (b−1

1 )+ G(K)
K

(λ2
1+ λ−2

1 + κ2)

]
, (76)

whereK = b1+ 1+ b−1
1 . As κ →∞ with λ1 finite, b1 ∼ κ2,K ∼ κ2, so (76) implies that

σ̂13

µγ̇
→ 1

2f (∞)+ 1
2f (0)+ 1

2G(∞),= S, (77)

whereS is the reciprocal of the shear enhancement factor. The three linear relations (61), (66)
and (77) forf (∞), f (0) andG(∞) have a unique solution

f (0) = S, f (∞) = 6A− 5S, G(∞) = 6(S − A). (78)

For illustration we choose the values

S = 1
8, A = 1

3, (79)

measured by Budd and Jacka [20] for warm ice near melting, but recognise that their test
conditions are not necessarily appropriate to the response of ice in a cold sheet. In particular,
it is expected that for cold iceA exceeds unity (an enhancement factor for axial compression
less than unity – according to Pimientaet al. [22] it can be less than 0·1). The limit values
(78) are then

f (0) = 1
8, f (∞) = 11

8 , G(∞) = −5
4, (80)

which supports the earlier suggestion from (63) thatG(K) is negative andf (b) is monotonic
increasing, withf (1) > 1, and further thatf (b) is positive. There are the additional restric-
tions (60) onf atb = 1 andG atK = 3. For any choice off (b) meeting these conditions it
remains to satisfy the inequalities (62).

6. Model validity and illustrations

We now explore some simple monotonic increasing functionsf (b) with free parameters, de-
termine numerically the correspondingG(K), and demonstrate that the required inequalities
can be satisfied. For illustration purposes, two following fabric response functionsf (b) have
been adopted

f (b) = f∞ − (f∞ − f0) exp(−αbn), α > 0, n > 0, (81)

f (b) = f0+ (f∞ − f0) tanh(αb), α > 0, (82)

wheref0 = f (0) andf∞ = f (∞) are limit values prescribed by (78)–(80),n in (81) is a
free parameter, andα in both (81) and (82) is determined by the restriction(60)2. Plots of
the chosen fabric functionsf (b) are presented in Figure 4, where the curves labelled (1), (2),
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(3) correspond to the function (81) withn = 1, 2, 3 respectively, and the curve labelled
(4) corresponds to the function (82). The same labelling applies in subsequent illustrations.
Figure 5 shows plots of the functionsG(K) determined by (58) for this set of functionsf (b).
We note that the function (81) withn & 2 yields non-monotonic functionsG(K), with strong
minimums for largen. It is expected that the latter is an undesirable feature which will lead to
an unlikely viscous response for the ice, and this will be confirmed.

Figure 4. Adopted forms of the fabric response
functionf (b).

Figure 5. FunctionsG(K) associated with the adop-
ted fabric response functionsf (b).

With the adopted response functions presented in Figures 4 and 5, numerical simulations
of the uniaxial unconfined compression and simple shearing tests, as described in Section 5,
have been carried out. The results for the uniaxial compression started from the initially iso-
tropic state are shown in Figure 6, in which the evolution of the normalised axial viscosity
σ̂33/(2µD̃33) with increasingλ1 is illustrated for the different functionsf (b). It is seen that
the function (81) withn = 1 and the function (82) yield very similar results, while (81) with
n = 2 predicts much faster softening of the ice, and (81) withn & 3 gives rise to non-
monotonic response which is an unexpected and unlikely material response. Forn & 5 there
are physically invalid responses with negative viscosity.

The results of simulations of the simple shearing following the compression along thex3-
axis in a plane flowb2 = 1 are shown in Figure 7, in which the evolution of the normalised
directional viscositŷσ13/(µγ̇ ) with increasing shearκ is presented. Figure 7(a) illustrates the
results obtained for different functionsf (b) in the case of shearing started from the isotropic
stateλ1 = λ3 = 1, and Figure 7(b) presents the results obtained for shearing started from an
anisotropic state induced by an initial compressionλ3 = 1/λ1 = 0·5. Again, the functions
(81) with n = 1 and (82) give similar results, and (81) withn & 3 again yields an unlikely
response.

Finally, Figure 8 shows, for the function (81) withn = 1, the evolution of dimensionless
directional viscositiesµij /µ with b1 for all (except the isotropic state) possible cases of re-
lative valuesb1 > b2 > b3. It is seen from the plots that all the equalities and inequalities
(36)–(40) are satisfied for this particular choice of the fabric response functionf (b), and
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Figure 6. Evolution of the ratioσ̂33/(2µD̃33) with λ1 in uniaxial compression for different fabric response
functionsf (b).

Figure 7. Evolution of the ratioσ̂13/(µγ̇ ) with increasing shearκ following initial plane compressionλ3 for

different fabric response functionsf (b): (a) shearing starts from an isotropic state(λ3 = 1); (b) shearing starts

from an anisotropic state(λ3 = 0·5).

monotonic decreasing viscosities are obtained for all the cases considered. The function (82)
yields very similar results. However, while the inequalities are verified for the other values of
n in the function (81), it has been seen that non-monotonic responses occur forn & 3, and
negative viscosities forn & 5.

7. Conclusions

An orthotropic viscous relation with reflexional symmetries in an evolving set of principal
stretch planes successfully models observed features of fabric evolution in polar ice sheets.
While the motivation for the macroscopic law is an underlying concept of individual crys-
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Figure 8. Evolution of dimensionless directional viscositiesµij /µ for different flows: (a)b1 = b2 > 1 > b3
(uniaxial compression); (b)b1 > b2 > 1 > b3 (b2 = 1·5); (c) b1 > b2 = 1 > b3 (plane flow);
(d) b1 > 1> b2 > b3 (b2 = 0·75); (e)b1 > 1> b2 = b3 (uniaxial extension).

tal glide plane rotations, such a law could reflect induced anisotropy in other materials for
which the current response is instantaneously viscous. Illustrations show that very simple
restricted forms can satisfy derived properties of directional viscosities and match measured
enhancement factors in indefinite stretch and shear tests. There is ample flexibility to correlate
response with further data, for ice or other materials, and this constitutive form provides a
framework which could incorporate the macroscopic effects of a variety of observed crystal
interaction processes.
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